Wortmannin-induced vacuole fusion enhances amyloplast dynamics in Arabidopsis zigzag1 hypocotyls
نویسندگان
چکیده
Gravitropism in Arabidopsis shoots depends on the sedimentation of amyloplasts in the endodermis, and a complex interplay between the vacuole and F-actin. Gravity response is inhibited in zigzag-1 (zig-1), a mutant allele of VTI11, which encodes a SNARE protein involved in vacuole fusion. zig-1 seedlings have fragmented vacuoles that fuse after treatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and underscore a role of phosphoinositides in vacuole fusion. Using live-cell imaging with a vertical stage microscope, we determined that young endodermal cells below the apical hook that are smaller than 70 μm in length are the graviperceptive cells in dark-grown hypocotyls. This result was confirmed by local wortmannin application to the top of zig-1 hypocotyls, which enhanced shoot gravitropism in zig-1 mutants. Live-cell imaging of zig-1 hypocotyl endodermal cells indicated that amyloplasts are trapped between juxtaposed vacuoles and their movement is severely restricted. Wortmannin-induced fusion of vacuoles in zig-1 seedlings increased the formation of transvacuolar strands, enhanced amyloplast sedimentation and partially suppressed the agravitropic phenotype of zig-1 seedlings. Hypergravity conditions at 10 g were not sufficient to displace amyloplasts in zig-1, suggesting the existence of a physical tether between the vacuole and amyloplasts. Our results overall suggest that vacuole membrane remodeling may be involved in regulating the association of vacuoles and amyloplasts during graviperception.
منابع مشابه
A Unique HEAT Repeat-Containing Protein SHOOT GRAVITROPISM6 is Involved in Vacuolar Membrane Dynamics in Gravity-Sensing Cells of Arabidopsis Inflorescence Stem
Plant vacuoles play critical roles in development, growth and stress responses. In mature cells, vacuolar membranes (VMs) display several types of structures, which are formed by invagination and folding of VMs into the lumenal side and can gradually move and change shape. Although such VM structures are observed in a broad range of tissue types and plant species, the molecular mechanism underl...
متن کاملAutophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth.
Plant peroxisomes play a pivotal role during postgerminative growth by breaking down fatty acids to provide fixed carbons for seedlings before the onset of photosynthesis. The enzyme composition of peroxisomes changes during the transition of the seedling from a heterotrophic to an autotrophic state; however, the mechanisms for the degradation of obsolete peroxisomal proteins remain elusive. On...
متن کاملAutophagy-Related Proteins Are Required for Degradation of Peroxisomes in Arabidopsis Hypocotyls during Seedling GrowthC
Plant peroxisomes play a pivotal role during postgerminative growth by breaking down fatty acids to provide fixed carbons for seedlings before the onset of photosynthesis. The enzyme composition of peroxisomes changes during the transition of the seedling from a heterotrophic to an autotrophic state; however, the mechanisms for the degradation of obsolete peroxisomal proteins remain elusive. On...
متن کاملInvolvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis.
The endodermal cells of the shoot are thought to be the gravity-sensing cells in Arabidopsis. The amyloplasts in the endodermis that sediment in the direction of gravity may act as statoliths. Endodermis-specific expression of SGR2 and ZIG using the SCR promoter could complement the abnormal shoot gravitropism of the sgr2 and zig mutants, respectively. The abnormalities in amyloplast sedimentat...
متن کاملImproved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1
A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...
متن کامل